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NOMENCLATURE

Some symbols defined in the text and used but briefly are not
included here.

az YP/p speed of sound for the mixture
Py \Tpo/po average speed of sound for the mixture
aij equation 4. 31a)
An equation .4. 3)
Anij equations (3. 47) and (3. 58)
Gn amplitude defined by equation (4. 4a)
ij equation (4. 31b)
Bn equation {4. 3)
nij equations (3, 48) and (3. 59)
ij equation (4. 31c)
C specific .ieat of particulate material
Cp’ Cv specific heats of gases
Ep’ﬁv specific heats of gas/particle mixture, equation (2. 3)
Cnij equation (4. 32)
le. equation 4. 31d)
Dni equation 4.2)
Dnij equation (4, 33)
e, stagnation internal energy of gases
epo stagnaticn internal energy of particulate material
ELZ equation (3. 18)
En2 equation (3. 16)
fs equation (3. 4)
fu equation (3. 5)
f equation (3. 6)
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equation (3,7)
equation (3, 22)
equation (3,23)
equation (3. 24)
equation (3.25)
equation (4.20)
equations (7. 1) and (7. 8)
eqgaation (8. 1)
equations (2. 5) and (8.2)
eguation (2. 8)
equation (4.21)
equation (3. 1)
equation (3. 2)
equation (3. 3)
equation (3. 19)
equation (3. 20)
equation (3.21)
equation (4. 22)
equation (3. 30)
equation (3, 31)
equation (3. 43)’
equation (3. 52)
complex wavenumber k = (w-icx.)/a.o
wavenumber for longitudinal or axial modes

wavenumber for three-dimensional normal modes
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equation ‘4. 23)

length of chamber

equation (3, 32)

mass flux of gases inward at the burning surface

mass flux of particulate material inward at the burning surface

_I\_dach number of the gases at the edge of the combustion zone,
u,/a
b’ "o

pressure
average pressure

equation (2. 11)

equation (2. 14)

perimeter of the chamber cross section

heat release by homogeneous reactions

equations (2. 6) and (8. 3)

equation (2.9)

mass averaged gas constant

mass averaged gas constant for the gas/particle mixture
response function, equation (7.4)

equations (3.42), (7.2), and (7.7)

total area of burning surface

cross section area

equation (2. 15)

temperature of gases in the chamber

temperature of particulate material

temperature of gases at the edge of the combustion zone

T-T
s
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1+ 24 ° 34 4+ equations (4.26) - (4.29)

a velocity of the gases
Ep velocity of the particulate material
speed of gases entering at the burning surface
v volume
wp rate of conversion of particulate material to gas (mass/vol-sec)
Q attenuation or growth constant
B equation (6. 13)
Y ratio of specific heats for the gases, Cp/cv
Y ratio of specific heats for the gas/particle mixture, 6p/6v
% mass fraction of particulate material, pp/pg
N equations (1. 6) and (4. 3)
P density of the gas/particle mixture, p = pg+pp
pg density of the gases
pp density of the particulate material
Po average density of the gas/particle mixture
o} diameter of particles
21 equation (2. 13)
4 equation /8. 9)
Ty equation (8. 10)
'bn equation (4. 2)
xy& normal mode shapes for one-dimensional problems
"bn normal mode shapes for three-dimensional problems
w, angular frequency for one-dimensional normal modes
W angular frequency for three-dimensional normal modes
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NONLINEAR BEHAVIOR OF ACOUSTIC WAVES

IN COMBUSTION CHAMBERS

F. E. C. Culick

ABSTRACT

This reportis concerned with the general problem of the nonlinear
growth and limiting amplitude of acoustic waves in a combustion chamber.
The analysis is intended to provide a formal framework within which prac-
tical problems can be treated with a minimum of effort and expense. There
are broadly three parts, First, the general conservation equations are
expanded in two small parameters, one characterizing the mean flow field
and one measuring the amplitude of oscillations, and then combined to
yield a nonlinear inhomogeneous wave equation. Second, the unsteady
pressure and velocity fields are expressed as syntheses of the normal
modes of the chamber, but with unknown time-varying amplitudes. This
procedure yields a representation of a gereral unsteady field as a system
of coupled nonlinear oscillators. Finally, the system of nonlinear equations
is treated by the method of averaging to produce a set of coupled nonlinear
first order differential equations for the amplitudes and phases of the
modes., These must be solved numerically, but results can be obtained
quite inexpensively,

Subject to the approximations used, the analysis is applicable to
any combustion chamber. The most interesting applications are probably
to solid rockets, liquid rockets, or thrust augmentors on jet engines.

The discussion of tiiisreportis oriented -owards solid propellant rockets,
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I. INTRODUCTION

The purpose of this analysis is to develop a suitable framework for
studying the growth and limiting amplitude of acoustic waves driven mainly
by interactions with combustion processes. Although the emphasis here is
on the problem as it arises in solid propellant rocket motors, other cases
can be treated in the same way. For example, since sources of mass and
energy within the volume are accounted for, unstable waves in liquid rocket
motors and engine thrust augmentors may be regarded as special cases.
The principal distinguishing features of the solid propellant motor are the
source of mass and energy at the boundary, and the non-unifor.m flow field.

A primary motivation is to produce analytical results which may be
used to interpret data. For many practical situations, elaborate numerical
~omputations based on the governing differential equations are inappropriate
owing to uncertainties in the required input information. The essential idea
pursued here is to convert the governing partial differential equations to a
set of ordinary nonlinear differential equations in time, for the amplitudes
of the normal modes of the chamber. The way in which this is done is very
strongly conditioned by previous work on the linear stability of the normal
modes [ Culick (1973 -1975)] and constitutes a development and extension of
recent work on nonlinear behavior, Culick (1971), The precursor of this work
was based on the observation that an oscillatory motion in a solid propellant
motor very often exhibits quite clean sinusoidal behavior even when the
amplitude attains a limiting value much larger than those at which nonlinear
effects are clearly evident in, for example, acoustic resonance tubes driven
at room temperature. This suggested that the acoustic field might be repre-
sented approximately in the form of a standing wave having time-dependent

amplitude,
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£~ i) (1.1)

(o]

o o~ o) (1.2)
Yk

where k = w/T is the wavenumber., The true wave structure in space is
distorted by fractional amounts of the order of the Mach number of the mean
flow, which, as shown by Culick (1971), need not be explicitly determined
within the approximations used. The problem comes down to finding the
amplitude n(t). Thus, the unstable wave is regarded as one having a fixed
shape in space, but the amplitude varies in time. For example, if one
examrines the fundamental mode of a T-burner, § = cos (z/L) and the mid-
plane of the chamber is always a nodal plane.

The argument in the earlier work led to the nonlinear equation for n,

A +wln+afn,f) = 0 (1.3)

where, partl:r by assumption and partly from the analysis
. 2 . e 12
» M) = ~2a n n n .
fn,n) = -2a + B Inl +8,n" +y In| +v,|nl (1.4)

Equation (1, 3) describes, as one would anticipate on physical grounds, a
nonlinear oscillator, .}nd it is often possible to attach a physical interpre-
tation to the coefficients q, B> By Yp» Ype

Approximate solutions to Equation (1.3) have been constructed both
by the method oi averaging, Krylov and Bogoliubov (1947), Bogoliubov and
Mitropolsky (1961), and by expansion in two time variables, Kevorkian (1966).
Although differing in certain details - for example, higher approximations
are more easily constructed by using two time variables - the results
obtained by the two methods are equivalent. In either case, the first
approximation has the form

n{t) = da(t) sin(wt + @ (t)) (1.5)
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The amplitude @(t) exhibits the correct gross behavior; during growth, d(t)
increases from an arbitrarily small value, progressing through a period of
linear behavior ( a ~ exp (at)), and ultimately leveling off at some limiting
value determined by the coefficients in f(n, 7).

However, the approach just described fails in what appears to be an
important respect. That is, even to second order in some small parameter
characterizing f, no even harmonics are generated. This is not only con-
trary to observations in solid propellant rockets, and expecially in T-burners,
but it cannot be correct if nonlinear effects associated with convection (i.e.,
those represented mainly by the term u - Vu ) are present.

It is therefore necessary to construct a new analysis. Because the
results based on the simple analysis just described do in fact exhibit some
important features of the behavior, it is reasonable to examine modifications
and extensions of that approach,

The basic idea here is to permit explicitly, from the beginning, the
presence of all possible standing waves. This really amounts to stating
that an arbitrary unsteady field can be synthesized of its Fourier components.

b
b3

Equations (1.1) and (l1.2) are replaced by the expansions

[0 0]
D 1) (1.6)
1i=0

- f ﬁl .

@ = e (1.7)
i=

The total pressure density and velocity fields are of course average plus

fluctuation fields

p =7 tep' 1.8)
p =P tep' (1.9)
4 = p+ e (1.10)

: The term i=0 in (1. 6) is simply n(t) v presenting a shift of the average pres-
sure. There 1s no correspondmg veloc1ty fluctuation, so a term i=0 dues not
appear in (1. Only in 510 will the influence of nj #0 be accounted for.
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where p is introduced as a dimensionless quantity measuring the magni-
tude of the near flow speed, and € is similarly a measure of the amplitude
of the oscillations. Both p and € are essentially parameters for bookkeep-
ing (see §2).

In § 2 the procedure for constructing the nonlinear wave equation
is outlined. Mainly the three-dimensional problem is discussed, but some
contributions arising from the corresponding one-dimensional analysis will
be incorporated. There are two features distinguishing this analysis from
previous works treating nonlinear motions in liquid propellant rockets:
sources of mass, momentum, and energy at the burning surfaces are inclu-
ded; and the mean flow field is non-uniform.*

The expansions (l1.6) and (1, 7) are introduced in the nonlinear wave
equation, and in §3 a set of equations for the time-dependent coefficients
nn(t). Each equation of this system represents the motion of a simple

forced oscillator, where the force Fn depends both linearly and nonlinearly

on all the urt

2 -
2 +‘-°n1'1 - Fn(ﬂl; ﬂz, -0--) (1-11)

If only the linear terms are retained, then one can extract from (1.11) all
known results for linear stability analysis. The nonlinear terms arise from
the gasdynamics in the chamber, the combustion, and other processes.

Only the contribution from the gasdynamics can presently he given simple
explicit forms, Owing to the manner in which the problem has been formu-
lated here, many of the nonlinear terms represent coupling between the
medes. It should be noted also that terms representing linear coupling arise

as well, both from the gasdynamics and from the combustion processes.

D

“The average pressure, density, and temperature are assumed to be uniform, a
realistic approximation to the situation in rocket motors. To treat certain types
of thrust augmentors, one must account for nonuniform average temperatures
and densities, which can be done within the framework developed in this report.
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In §4 an approximate means of solving the set (1.11) is discussed.
While it is true that if Fn is given, the coupled ecuations can be solved
numerically, this may be a relatively expensive procedure, The purpose
here is to provide a considerably faster and cheaper means of obtaining
the informe:ion desired. Here the technique used is essentially that termed
generically the '"method of averaging.'' It is based on the assumption --
almost always valid for the unstable motions encountered in practice-- that
the motions exhibit relatively slowly varying amplitude and phase. Thus,

the functions nn(t) are represented as

nn(t) = ﬂn(t)sin (wnt + CPn(‘t)) = An(t)sin unt + Bn(t)coswnt (1.12)

According to the basic assumption used, the quantities dn, @ An, Bn
suffer only small fractional changes during one period of the oscillation.
The analysis then produces coupled first order ordinary differential equa-
tions, a system which is cheaper to solve than the system of second order
equations.

The system oi first order aquations is valid for problems in whick
the frequencies of the higher mowes are not necessarily integral multiples
of the fundamental frequency. In §4 the general equations are given. As
an elementary example, the motions of two coupled pendula is analyzed in §5-
this shows the familiar beating of the oscillations, a feature which seems
not to have been accommodated by previous aprlications of the method of
averaging,

Many practical problems involve purely longitudinal (''organ pipe'’)
modes, for which the frequencies are integral multiples of the fundamental.
The system of nonlinear first order equations simplifies considerably for
this case, treated in §6. For applications, it is necessary to incorporate

representations of processes responsible for the loss and gain of energy
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by the waves. An approximation to the interactions between pressure waves
and surface combustion is descrited in §7. One way of handling the loss of
energy due to particles suspended in the gas is covered in §8; the results
show favorable comparison with more exact numerical calculations reported
elsewhere. In §9, linear and nonlinear viscous losses on an inert surface
are examired. Associated with the nonlinear unsteady motions there is also
a change in the average pressure; this is discussed in $10.

Several examples of unstable motions in motors and T-burners are
covered in 811. The cases have been chosen for comparison with numerical
results previously reported; again, the agreement appears to be quite good.

As noted above, the analysis has been strongly motivated by previous
work on the linear stability of motions. In §12 the connection is discussed.
One of the attractive {eatures of the formulation cf the nonlinear behavior
is that the more familiar linear results are not merely accommodated, but
explicitly incorporated and used. An interesting and important unsolved
problem concerns the influence of coefficients characterizing linear behavior
on the nonlinear behavior. The coefficients are proportional to the real and
imaginary parts of the complex wavenumber computed in the linear analysis,
Nonlinear behavior anpears to be quite sensitive to their values; a few ex-
amples are included in the brief discussion given in §12. 2,

Analysis based on expansion in normal modes with time-dependcut
coefficients have earlier been reported for unsteady motions in liquid pro-
pellant rocket motors [e.g. Zinn and Powell (1970), Lores and Zinn (1973)
and other works cited there]. Results were obtained for specific problems
by solving the second order equations for the amplitudes. Reduction to a
set of first order equations was not effected. Thus, the computational costs

must be substantially greater. Moreover, interpretation of the formal rep-
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sentation, and incorporation of processes such as particle damping and sur-
face heat losses appears to be somewhat more difficult than for the analysis
developed here. It is likely that the techniques discussed in the references
cited above and those discussed in this report should produce the same sec-

ond order equations for the same problem. This has not been verified.

II. CONSTRUCTION OF THE NONLINEAR WAVE EQUATION.

The nonlinear wave equation for the pressure is constructed by
suitably combining the conservation equations and the equation of state.
For applications to solid propellant rocket motors, it is necessary to
treat the medium in the chamber as a two-phase mixture of gas and parti-
cles. Culick (1974) has outlined the steps necessary to produce the equa-

tions for the velocity and pressure

-

au — - _ - —
P teu-Vu +Vp _6Fp- o] (2.1)
gP-+I{-Vp+7pv-E=E [@-u)-F +u-0 +(e_-e )w
t T, P P po o''p
(2.2)

+ (Q+(>Qp) +(1+ n)Cvap]

Here, p is the densitv of the mixture, p = pp + pg , and « is the ratio of the
mass of particulate 1iatter to the mass of gas in a unit volume of chamber:
"= pp/pg. It will be assumed throughout that # is a constant in both space
and time., With C the specific heat of the particulate material, the proper-

ties of the mixture are:

C, +C _ C_+nC _ C
S = T Cp® TT¥x U
v

(2.3)

P=Pg(1+n) a =7§T=-Y—';E-



The equation of state is

p = RpT = —&_ (2.4)

where R is the gas constant for the gas only, and R = Ep - Ev = R/(1 +n).
Note that ( ) is used in (2. 3) and (2.4) to denote certain material proper-
ties of the mixture. Later the same notation will be used to denote time
averages of variables.

The force of interaction and heat transfer between the gas and

particles is representied by

. 3a
F = - —L + 5,0 .7 ] (2.5
p [pp t © Pp'p " Yp )
de X - [aT -
Qp = -[pp-—}—at + Ppup . Vep] ) -PPC —‘Eat + up . VTP] (2.6)

The differences between the local values of velocity and temperature are

-—t b d

ba = u - 8T =T -T 2.7
p T YT PP (2.7)

Then the differential force and heat transfer are

asu
B o= - —P 2 -va -u-va
6Fp = p}:[ 5t + (u.p Vup u Vu)] (2.8)
[aaT . .
= - —P 3 « VT =u -V .
5Qp PPC 3t (up p~ ¥ T)] (2.9)

All symbols are defined in the list of the end of the report; additional details
leading to the forms quoted here may be found in Culick (1974).

The nonlinear wave equation is found from (2.1) and (2, 2) as

2 ¥ -0
a - ~ - 22 - -- . —.. - - —22 . - —i _’- __ ol \ ap
—-Ratz ypVv . YoV« (u-vu) [Y 5t vV ut 3 (u-vp)) - vpv +/+W (2.10)
where
_ E — -—o . - - . -t - —
P [‘“p U Fo 4T+ (ep e ) w, +(Q+5Q) +(l+n)Cvap] (2.11)

v

The corresponding results for purely one-dimensional problems [see Culick
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(1973, 1974) for further details of the formulation] is

2
9 Yp 8 [cd e du
at2 - s Tz-(_p_az) - YpSc 9z (Scuﬁ)
~9p 1 8 3 )
'[Y5t2§a—z'(“sc)+at (“52)]
(2.12)
15[ 8F -3,
- YP3 3z \%c P
(o]
ot Bt
with
_ 1 (p)
21 -—(u-up)wp+ Sc[ufmbdq+upfmb dq_] (2.13)
P =R—-[(u -u)F_ +ul + (e -e Jw_+(Q+5Q.)
1 ¢ p p 1 po o' 'p P
v (2.14)
+(1+ n)Cvap]
_ L Y R 2 2 2 2
S1 = SCI[(l+n)YR(T+ AT) + ZEV {ub-u +n(upb-up)]mbdq
_ (2.15)
1 R ., 2 2
— + H -
* SJ[CAT 2C. | pb 1) ] ppPugda
A'2

It has been assurned, to obtain the form shown for Sl,that AT, the difference
between the temperature of the rmaterial at the edge of the combustion zone
and the average value in the chamber, is the same for both gas and particles.
This is not an essential assumption, but is done here to simplify the formulas
somewhat, Note that except for extra terms in 21 and Sl' there is a one-
to-one correspondence between the terms of (2,10) and (2.12).

There are two ways of proceeding towards soluble problems, A
formal expansion procedure can be applied directly to the complete wave

equations, (2.10) and (2.11); or the first order equations (2.1) and (2. 2)
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can be expanded, and the wave equation formed. The results are identical,
but because the second calculation is somewhat simple~, it is given here.

Substitute the expansions (1.8) - (1.10) into (2.1) and retain only

terms to second order in € to find:

a;;! 1 _ - — — = -ol — .&l. 2‘:1:! -_1- -t -+
3 +$\7p' = -plu.va'+u'-va)] - efu'-vu'+ T Bt ] + GF(GFp"o') (2.16)
gtR' + Ypv- Q' = -p[T-vp +vp' V- a]- e['Tp'Vw-;' +u vp'] + %— P (2.17)

where F' is the fluctuation of P. To this point terms to all orders of u have
br:en rete.ined, and no assumption has been made about the ordering of G-f‘p',
o' and P'. Eventually only terms to first order in the mean flow speed will
be retained, so the mean pressure and density will be constant. For

simplicity, use that tact now and write* P= P, P= Py 2% - \é po/ Po

The nonlinear wave equation may be formed now by differentiating

(2.17) with respect to time, and substituting (2.16¢) into the second term

t'v' }

_’l _‘l Y a ] -.' l a -.| 1 _.'
-s{p°V°(u-Vu )-:-_—_Zsf(p V- u )-;E(u *Vp') +V'(Pg‘u{)

on the eft hand side. Some rearrangement gives

1

L

2
2, 1 97p' . { v a vyl 2.9
vp' - = ~Z .ppovﬁw+u.va) u Vet -

a

IR
Q)

B
=2
a

e

- _{ 1.32%'-52\7. 6 F '-6')} (2.18)
3~ P

The boundary cond’:ion accompanying (2,18) is found by taking the component
of (2.16) norrmal to the boundary:
hoopt . op BLa @ va' +u' Va) A - €(p U’ VI + '83')-5
P - Po Bt B Py Pe P Bt
| (2.19)
— ks 1 - t)e A
t < ((SI"‘p G')*n
The cne -dimensional counterparts of (2.17) and (2.18) are easily

deduceu by replacing v by 8/9z, and the divergence V.V of a vector v by

“Note that Po stands ‘or the average value of the density of the mixture:
= p_ (l4mu).
go

fo ~ ppo+pgo
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-1 - .
S, 8/8z(SCvz). Also, 0 is replaced by 21 and Pby P, +8,.
For computations of linear stability,only terms of order p appear on
the right hand sides cf both (2.18) and (2.19). The solution for the nth
mode then has the form (1.1), with n(t) a simple exponential,

at

0 ¢n(¥) (2. 20)

Thus, the first influence of the perturbation produces a growth or decay;
a is proportional to the average flow speed, characterized by p. There is
a small change of the frequency, but the spatial structure of the mode, b
is undistorted in first approximation. Calculations of-that-sort can be
extended: the next approximation provides a formula for a correct to
second order in the mean flow speed, and the first order distortion of the
mode shape.

The purpose here is to develop a description of nonlinear temporal
behavior associated with second order acoustics. The perturbations associ-
ated with combustion and mean flow are the same as those accounted for in
the treatment of linear stability. In order that only linear terms in p should
appear in (2.18) and {2.19), it is necessary that the undistorted mode
shapes should be used on the right hand sides. Formally, this step implies
that terms of order pz, ep and higher are neglected compared with those
of order p and €. This corresponds to the following limit process applied
to the small parameter g and ¢,

Consider, for example,only the two terms on the right hand side of
(2.18),

1 % pOV- (G° VE')} + €{p°V' (E' . VG')}
The acoustic velocity field with first order distortion is

:{l...a.l_'_al
= Uy TRy
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where Ga' is the classical acoustic field, Substitution gives
p.[{pov- @ - vﬁ’a')} + -&{pov- (Ga' . vﬁa' )}
p{pov~ @- vﬁl')} te {poV' (@ '-va, '+ 'Vt'ia')}

+pe { p V" (3" -vﬁ'l')}]
Now let , € = 0 but € /p~ 0 (1). Only the first terms survive, containing
the undistorted parts of the acoustic field, Similar reasoning applies to
the other terms on the right hand sides of (2.18) and (2.19). The procedure
can be extended to higher order in both 1 and €.
The expansions (1.6) and (1.7) are therefore appropriate. How
they are used to give a coupled set of equations for the amplitudes nn(t)

is described in the n-xt section.

III. ORDINARY NONLINEAR EQUATIONS FOR THE AMPLITUDES.

3.1 Construction of the Equations

Define the functions

h, =-pov-(ﬁ'-vﬁ" + G'-vﬁ)+§aﬁ‘- v%% +§2 '-5%:\7-\:1‘ (3.1)
h_=-p V- (@' -VG')+§2 Bit (p'v-u')+ ;1—2 a% (u'-vp') - v (p'%') (3.2)
h, = --15[;_1-2 Sy 2 (6F ) - & ) (3. 3)
£ =p, %Gt'-ﬁ (3. 4)
£, = p, (@ vu' +u' V) - A (3.5)
£ = (p,a'- Vi +p'%§-')'ﬁ (3. 6)
£, = -%(51'“'[)'-5')-6 (3.7)

Then the nonlinear wave equation (2, 18) and boundary condition (2,19 ) become*

“The ordering parameters are hereafter suppressed except in hV and fv.
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1 o%pt 2, h +h 8
3_2 2 - Vo' = -(hu+ Sy (3.8)
n.vp' = -f’s-f*&-fe-fv (3.9)

Multiply (3. 8) by the mode shape by for the nth mode and integrate over
the volume of the chamber. The first term on the left hand side can be
re-written using Green's theorem, and (3. 9) is then substituted. Some use

must be made of the following properties of the Y

Py +k Py =0 (3.10)
n 'Vq;n =0 (3.11)
2

j'\plq;ndv =6 . E (3.12)

K2 g 2,=2
n w, /3 (3.13)

These operations lead to
2B 4v + w 2[y p'av = -22[y [h +h, +h lav
J‘4’11 a2 d “u J‘q’np =-a Iq‘n TR

(3.14)

-2 ffu e e e og ) ds
Because of tl.e orthogonality (3.12) of the q;n, substitution of (1. 7)

in the left hand side >f (3.14) gives

poEnz[:ﬁn-f-mnznnJ = -—a.zj‘¢n[hﬂ+h€+ hv]dv
(3.15)
-2
- @“‘n[fsﬂp +£_ +£ 1ds
where
2 ¢, 2
E“ = [y “av (3.16)

For the one-dimensional formulation, the equation corresponding to (3,15)

is
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L
2r= 2 =2
PE “[n, tw,"n,] = -3 £¢L[hlp+hle th) 15 dz

(3.17)
L
-2
-a I:Sc“pz,(fls+ flp t fle + flw]°
where
2 _F o2
E)° = { Yy °S dz (3.18)
N 10 6 ® Gy 2% . Y das, 5,
Ip - P08 32"caz uu ;2 20t Sc 9t dz' ¢ :
_ 1 9 ou x_ 9 9 1 op' 1 ] ot
hle -pos—c Tz(Scu'_é_z)-f-;zS 3% (pla (Scu') +_2-5?(ul z)--—-azs-b—z—(scpl_BT)
c c
(3. 20)
JLfL 3 pasyl L B :
h, = - 6{32 5 (P'48)') - 5. % [bc(GFl;-Z, )]} (3.21)
_ ou'
fls = Py Bt (3.22)
£, = poaetuu’) 3
lp ™ Po az(““ (3.23)
_ ou' du'
fle: - pou' 3z T p' 3 (3. 24)
f = --I-(SF'-Z') (3. 25)
lw € P 1 *

3.2 Ewvaluating the Linear Terms

After sorne re-arrangement, one can establish the following identities:

, 2p=22 = -2
j'q,nhpdv + ﬁq,nfpds =pok J@ u')y dv - p,J (U xvXT]- vy _dV
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L L L N A LT
- 311! —
£¢thpscdz+[sc¢£f1p]o_ p°£ Tu ¢Lscdz+zzjo%[u .+ s, 51:— 4, @S, )18 dz

(3.27)
Ju b av+dfy £ as = 1f[__,_¢ e (6F' -5") - vy, 1AV (3. 28)
L L dy,
£¢thwdv+[sc%f1w]o j' [ 2% at (R +S])+6F, - ) g L1s 4z

(3. 29)

The terms in (3. 28) and (3.29) represent the influences of both surface and
residual combustion within the volume; the contributions associated with
condensed material suspended in the gas; and, for the one-dimensional
problem, the effects o” flow entering fiom the iateral boundary. Later(§ 3. 3)
the peculiarly one-dimezensional terms will be comtined in the three-dimensional
problem according to the prescription discussed by Culick (1975), To sim-

plify writing, define the functions H, H1 and Ll’ which appear in (3. 34) and (3. 35):

H = %[i_lz Wn%tg'+(6%p' -3y vy, ] (3. 30)
P! dv

H, = 1[_ v atl+(6F'-c') E] (3. 31)
3s ! ay
171 1 ey 03y

Ly = é‘[g‘z Vo 3 - (4] -9 4 (3. 32)

The acoustic quantities appearing in (3.26) and (3, 27) are approxi-

mated by the expansio.us (1.6) and (1. 7) to give *

2
[y By, dv +§\y £, ds z%‘!é ”1”[{%' v i".wi-\yﬁ.wn]dv

1

- Jf‘( Wi X Vx?—f)\yn- dv

+(7-1) [y ¥ veudv (3. 33)
1 o' =
r 2P oy, urhes

“As noted in connection with (L.6), no will be assumed to be zero throughout
except in §10.



L = k2 _dy _dy
r \J hlu dv + [Sc‘yﬁflﬂ:lo - —:_/'g-rrZ-l i {I [—%— ‘” m "V, d_zt:lscdz

Hy- I)I v "’zs d (S u)s dz}

v el g
The terms containing fs and fls are conveniently combined with the last

terms of (3.32) and (3. 33). Then with the preceding results, Equations

(3.15) and (3.17) become

© 2
0 X
2 . 2 _ . n = - = —'
ES[f_+winl = '}, ”1”[;2‘ Vp W VYT ¥ ue vy v
121 i

- J'(v “’i X fo_f)wn dv
+ (7-1)f\yiq/ v-i‘dv}

+570- G 2o, G, + > ub:|ds (3. 34)

' ‘l’
Eplf, +wf ury Z ﬁm{j[ 2 VU "Vma;yzijs‘lz

- 1 4 -
+ &0 [ vy 5 g5 505,92

(Continued)

The signs of [ ] aud the surface integral have been changed so

_" ~ 1 : A - sa .
u'sn=uy,'anduesn = u, are positive inward,

b
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(Continued from Page 16)

v ) . Py, *
+B%[:SC\IIL s (P ot =2 )Jo (3. 34)
L

L
‘{Jo \y!, hle Scdz + [ch’f,fle:]o}

~

+

LRI Cle

L ~ L
IHSdz+—LILSdz
17¢ P 1 ¢
[o] 0O O

3.3 Surface Terms in the Cne-~-Dimensional Problem; Combinin -

the One- and Three-Dimensional Problems

It is the function L1 which containsthe terms found in the one-dimensional

approximation, Only the lincar forms will be treated in this work., With the

definitions (2.13) and (2. 15), L1 to first order is

S' —\u(lﬂ&)atf(m +mbT )dq+w£(1+n)at_r I =
- [u'fExb dq + ui,J‘ r-ﬁép)dq]id\g (3. 35)

It is readily established, Equation (3, 11) of Culick (1974) that

(1+w) , , = AT’ Yy
+ - t '
po (mb mb To ) ub +p _Ez . (3. 36)

Then because the integral over dz dq is the integral over the lateral sur-

face, we can write

u

lfL 5. dz = lﬂ'“ < (o, ub+p——-—)dS

dy
z(lu) 8 T! — y(1+11) r L -
+ o rf T ¥y, 48 -2 Lu' 5 1y, dS
dy,
—l—ffsu 2 b(p)dS

The sign of u! in [ ] has been changed so that u
at the end surfaces.

b is positive inward
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it is a good approximation for most practical problems that the temperature
fluctuations within the chamber are nearly isentropic. * With this assumption,
and the approximation that the composition of thc material leaving the com-
pustion zone is the same as that within the chamber (so Py = (l+n);g), the

last identity can be written

- L - u
Y .Y 9 ' b
5 | Lydz = < ff v, 3 (P Up * P =5 )48
[o N o ] o a
-_— \ —
+(y-1)-§’;§1- ¥, T, ds (50 37)

_-ygu'—u ﬁ‘ 6u ﬂl—' (p)dS

The terms multiplied Ly (¥-1) in (3. 34) and (3. 37) combine to give

L
w
G-y A [y v, —Bs_dz (3. 38)
o)

m=1 pg

where use has been made of the continuity equation for one-dimensionai flow,

Substitution of (3. 37) and (3. 38) into (3. 34) then leads to

Eolf, +wy " zJ"z.ﬁ {.r[ sz :,n m“—"'JS dz

L
+ G0 \vmur_"’- s, dzf
(o] pg — L
— L by

(Continued)

This assumption which, at the expense of substantially more labor, ¢an
be relaxed, means tha* temperature or entropy waves (convected by the
average flow) are not -epresented in the volume of the chamber, Nonis~n-
tropic temperature fluctuations at the surface are accounted for (AT £ 0),
There is at present no evidence or calculation showing how important this
inconsistency might be., Essentially what is included is the direct influence
of nonisentropic surface combustion on the acoustic field, but interactions
between the entropy waves and the acoustic waves are ignored,
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[+ o] 0]
n dy_ dy dy
m [ £ - —(p)
- 2 2@ @ p IS5+ H&u 3z ™, 98
m=1l m
L
+ 2T a5 4z (3. 39)
po uo 1 ¢

Note that the surface integrals ir (3. 39) extend along the lateral
boundary only, and that the velocities ué, Eb appearing in those integr:ls
are positive inward. The second set of brackets containing surface terms
obviously correspond exactly to the surface integral in (3. 34). According
to the argument proposed by Culick (1974) these should be written in the
general case as*

73% g fupdy+ugsylds
where uy ! and u,' botii stand for the formula (3. 36).

Moreover, the surface terms contained in the last brackets of (3. 39) cin be

incorporated in the three-dimensional problems in the form
© 5 _
i (7 a 2 ﬁ o =.(P)
Zkzﬁ(vwi) (J\yn)én 1de+po Bub.V\ynmb 61 dS

i=1"4
Consequently, with proper interpretation, all probiems are represente . by
the equation
% —
Exzu[nn * wﬁnn] a Erf z Dniﬁi - B%§6;;)'an r.ﬁl(op) ds
i=1

y d
+E§‘IHdv+ﬁ 8 ry as

2| g }
- [y hdv+Qy f ds (3. 40)
(o]
* The symbols u', u'y. 6,6 are defined and discussed in §4 of Culick

(1975).
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where
kZ
2 _ rr_x_)_ = . =
En D ni - el kz \Vnro\,i \}'iu-V\Vn]dv
' (3.41)
+ -1 [y :P dv+——§(V\P) (V¥ )T, 6ydS
P
g 1
R = po (0'16_;_'?' Ll'n&u) (3. 42)

That the nonlinear .er:ns for the one- and three-dimensional problems corre-
spond exactly, and thecrefore can be accommodated as shown in (3. 40), is
demonstrated in the next section,

3.4 Nonlinear Terms

To the order considered here, there are no nonlinear terms explicitly
dependent on the mear flow. The representations will therefore be directly
useful for the classical problem of nonlinear waves in a resonant tube. No
special considerations are required for the one-dimensional problem. With -

the definitions (3. 2) and (3. 6),
x| N
I = b l./‘yn hedv ! g\yn fedS}
—_ au1
BL/ Yo [p u'. Vu' + p! ———-,dv (3.43)

; az f\ynl-y—é%(p'%u') + gta—(u'.Vp')]dv

o
It is within the approximations already introduced to use the zero order
acoustic approximations in these integrals:

9_‘—5.'_ ~ —_— ! QBL Y Toqg!
el »po vp 3t 'ypo u (3. 44)
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Then (3, 43) may be written as
1, = 7 /0oy @9a) - y_{F(@-a)%+3% 993} Jav

1

PoP

-

[lv v (p'vp') +‘lfn{(Vp')2 +7p‘VZp'}Jdv
[+

In the first term of the second integral, the approximation p' =~ a—zp' has

(3. 45)

*
been used; this is consistent with (3. 44). Now substitute the expansions

(1.6) and (1.7) to find, with the terms involving un dropped,

o [ o)
2 &
i=1 j=1
where
1 1
A..= JU9_ - (9¥.-9(Y.))
nij 7E: kifka n i i
—. 2,2 2
- \vn[y k, kj wivj - kj wi-wj]dv
2’ k2 y.v,}]av
Buj = " oT FEo 9 (99 + 4 L) (99)- 755 T4
n

Four integrals appear in these definitions:
Iiljn = [ vy (wi-V(wj)]dv
= vty vy)av
;ix = [y, 7 ¥ vy, dv

Inij =/ Wn q’i Wj dv

(3. 46)

(3. 47)

(3. 48)

(3.49)

(3.50)

(3.51)

(30 52)

*
More detailed consideration has been given by Chester (1961]) to the use
of acoustic approximations in the representation of finite amplitude wa-s es.
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Then (3.47) and (3, 48) are

-2.2.2 _ . ij ij 2.2
YEk/ kj Anij = I +k Io -7k kj 1nij (3.53)
-2
yE -
__n - i - JK2
—2 Bnij Lyt I, 'ykj I i (3.54)

One can eventually reduce (3.49)-(3.51) to multiples of Inij:

1J _ 1_ 4_ 2_ 2.2 _ _l_ 2.2 2_

Ln = 4[kj G -k) anij- 4kn(ki+ k )1 4(1< -k, )(k. +k L)
(3.55)

ij _ 1,222 1.2 1,,2 .2

= 3 (kj 4k )In;j =5 k| Inij + i(kj -k, )Inij (3.56)

SN § -

(= 3 (k + k kn )IniJ (3.57)

The secon . parts of (3.55) and (3. 56) show I ij and 1 2 decomposed intc pieces

ln

which are respectively symmetric and antisymmetric under interchange of

the indices (i, j). With these results, (3.53) and (3. 54) become

I..
.. = 21 [(k +k 2)2 -4'yk kZJ
mj 4yk2 kZE
(3.58)
s 27—2(1( K, )(k 2k ?)
Z'yk k., E
J n
(y-1)a I . (y-1)a 2 2
B .. = ——:_E“E-L(k tky )+-—-—————l(k k) (3.59)
J 2yE] ZyEn J

Again, the two parts on the right hand sides are respectively ~ym netric
and antisymmetric in (i, j)» In § 4, Equations (4. 32) and (4. 33), the following

combinations will arise:
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% S +k Pt 5
A. ww B = [ -2y k.k, 2(y-1)k. +k. ]
j j 27E2 2k1kJ LA b (r-1X i ])
_ (3. 60)
T S —k.2+k2-k2
n

It should be noted that there is yet no restriction to a particular
ceometry; the form of :he chamber influences the numerical results through
the values of the ki and the integral Inij' Because some terms in Ie , eq.
(3. 45), contain p', there are non-zero values fori = 0 or j = 0. These are
associated with the DC shift of mean pressure due to nonlinear processes;
this is treated separately in § 10.

Finally, because the nonlinear terms (3, 46) are summed over all
(i, j), and the coefficierts Anij' Bnij are multiplied by functions which are
symmetric in (i, j), only the terms containing the symmetric parts of Anij’
3 .. will survive. Thus, only the first brackets in (3. 60) will be required

nij

Jor later calculations.

1IVv. APPLICATION OF THE METHOD OF AVERAGING

Most of the terms on the right hand side are such that (3.40) may be

brought to the form

.. 2 _
fotw ' m = F (4.1)
vith
[>¢]
v .
F o= - (D A+E n]ZZ[A A A B nn, ) (4.2)
i=1 i=1j=1

Other contributions (for example proportional to |ni I, A Inj |, ees, etc,) may
arise; they are easily handled within the framework to be described now and

aecd not be considered explicitly.
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The set of coupled equations (4.1) can be solved numerically, but at
considerable expense. It is the intent here to reduce the second order
equations to first order equations, for which solutions may be calculated
quite cheaply. The basis for the approach taken is the fact that
many of the observed instabilities are essentially periodic with amplitudes
slowly changing in time. Each mode may th:: :fore be reasonably represented
by the form (1.12) with ﬂn(t), cpn(t), An(t) and Bn(t) slowly varying iunctions
of time., ..quations for the amplitudes and phases are found by averaging
(4.1) over an interval T which will be defined later.

Accounts of the method of averaging have been given by Krylov and
Bogoliubov (1947) and Bogoliubov and Mitropolsky (1961). The results are
restricted by the condition that Fn must be periodic. This is true for the
problems treated here if the modal frequencies are integral multiples of the
fundamental, a condition which is satisfied only by purely longitudinal modes.
Moreover, solutions are required here for a time interval longer than that
for which the more familiar results are valid., Both difficulties are overcome--
to some approximation not clarified or examined here--by the following
heuristic development,

Equation (4.1) represents the behavior of a forced oscillator, for

which the motion is

n ) = an(t)sin@nt + cpn(t)> = A sinwt +B_cosuwt (4.3)
and
a = [A:' + B:]% (4. 4a)
® = arctan [B_/A ] (4. 4b)



-26-

The energy of the oscillator is

1 2.2 1 42
ébn = 79, " +-fﬁn (4.5)

Because the oscillator has instantaneous velocity 'ﬁn, the rate at which work

is done on the oscillator is ﬁn Fn' The values time-averaged over the interval

T at time t are

t4+7 t+r
@y - Ligw  arp-ifine  wo
t t

Conservation of energy for the averaged motion requires that the rate of
change of time-averaged energy of the oscillator equal the time-averaged

rate of work done:
L&Y = @ F) (4. 7)
dt n \nn n ¢

In all that follows the essential assumption is used that the fractional
changes of the amplitude and phase are small during the interval of averaging.
The changes in time T are approximately &n'r and qﬁn'r, so the assumption
is

c?n'r << . , cbnw <<2q (4. 8)

According to (4. 2), the velocity of the oscillator is

A = w d cos(w t+p )+ [cbndncos (@ t+9 ) +c7n sin(w t+ \yn)]

The inequalities (4, 8) imply that the terms in brackets are negligible com-
pared with the first term; the stronger condition is set [see Krylov and

Bogoliubov (1947), p. 10 ] that the combination vanishes exactly:

Cpndn cos (wnt + Cpn) + dnsin(wnt t Cpn) =0 (4. 9)
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Thus the velocity and energy are

n = wnan cos(wnt + cpn) (4. 10)
& = wnz an?‘ (4.11)

A second consequence of (4. 8) is that when the integrals in (4.6) are doae,
a n and ®  are taken to be constant--i. e. they do not vary significantly during

the interval of averaging. Equation (4,7) therefore becomes

t+T
Wy 1 _Tp cos(w_t'+p_)dt’ (4.12)
dt w T n n n *

t

An equation relating Cbn and an is found by substituting (4. 2), (4.9),

and (4.10) into (4.1). The time-averaged result ic

t+T
chn -1
- 3 ] |
T o7 an snx(wnt + tpn)dt (4.13)
n n,

Although c?n, ®, are approximately constant over one cycle, they may vary
subetantially over long periods of time. Equations (4.12) and (4.13) are
then awkward to use., The difficulty is avoided by solving (4. 3), (4. 4),
(4.12) and (4.13) for An and ﬁn' It is this pair of equations which will be

used as the basis for subsequent work:

dAn . t+T
—n . 1 1
T o f Fn cos wnt dt (4. 14)
oo
dBn . t+T
S UL I i ' gt
B = f F_sinw t'dt (4.15)
t

For Fn given by (4.2), the first order equations have the form
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dA aA dA
- - (g o2
t t linear t nonlinear
d
dBn ) ( Bn ) X (dBn
dt - dt . dt .
linear nonlinear

The linear contributions are:

(4. 16)

(4.17)

dA, =.ip A A___B fn{ :Pn [(f ;1o )A - (g +L L )B, \r
-/ =-2D A -z——B 'Z_’ -(g, il
linear
iZn
1
- 72;;5 {Eni [‘gni“’nimi'(fni‘hni’Ai]} (4. 18)
dB E ifn
n _ 2 1 _nn 1
dt L - "'Dnan+2 w An+2m 5 {wiDniufni'hni)Bngni'Lni)Ai]}
inear n n
ign
1
+ z,,';é {Eni[(gni‘*'ni’Bi“fni‘hni’Ai7} (4.19)
where
T
sin(w.+w )=
£, = 1 02 osl(w+w )t+5)] (4. 20)
ni T i n 2
(wi+wn)§
. T
SIH(wi+wn)f
g = 7 sin[(w, +w )(t+ )] (4.21)
(wi+wn) z
. T
sin(w, -w_) 5
h. = 1 02 cosl(w.-w )t+D)] (4, 22)
ni (w'_w )1 i n 2
T
sm(w -~ )5
L = 22 ginl(w,-w )t+3)] (4.23)
(. -w ) ~ i ’n
i"%n’ 2
The nonlinear contributions are
dA ©
n _ 1 [ nij mJ.]
— 2 - m— C a,. T, C T
(dt nonlineax 2w, & Z { nij 14 32
i=1l i=1
+D_..|b.. T‘“’ +d,. T“‘J]} (4. 24)
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dB 0 o0
—_n - _.1___ nij nij
(dt) . = 3w Z Z{ij 255 T2y =~ S5 T4+]
nonlinear =1 j=1
+D s [b Tm3+d T“‘J]} (4. 25)
where
lr
.. sin(w_+w,) 5
Tﬁj = n iTZ cos [(w +w )(t+1)]
n = 2
(wn+wi)2—
sin(w -w )-T- (4.26)
+ n 22 sl -w )(t+:r-)]
oL n 4T 2
(wn wi)2
T
.. sinfw +w )z
Tf,_’jg = a f_?‘ sin{ (w +wi)(t+%-)]
n
(wn+wi)2—
(4. 27)
sin(w -wi)% T
- == sin[(w_-w )t +5)]
(wn""’i)?
sin{w +w )1
T?i: n *f sinl(w_+w )t +3)]
n = 2
(4. 28)
sin(w -w )1
* .
] B 22 sinl(w_-w, )t +5)]
(wn-wi)i
sin(w_+w )I-
Ty = ——-——‘-‘—-—,—?—5 cos{(w +w )t +=)]
h o+ 2
(%ﬁwQE 4. 29)
sin{w_-w )1 .
; 222 cosl(w_-w, )t +3)]
(wn-wi)z-
w, = @ +!.¢:j
} (4. 30)
W = W, W
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1
> (AiAj - BiBj)

o
]

1
ij = 2 (A BB

1
5 (AiBj + AjBi

(4. 31)a, b, c,d

C.. =

ij

d.. = ‘l—(A.B - A.B.)

ij 2 i7) !

C..=A . ww, -B_.. (4. 32)
mj mj 1) nj

D «e = .. W.W. +B .o (4.33)
mj nij 1) mj

The coefficients Cnij and Dnij are calculated with Equation (3.60); as noted
at the end of § 3, only the symmetric parts are required.

These formulas are valid for any geometry; the modal frequencics
may have any values., Considerable simplification may accompany special
-ases, Most of the following discussion will be concerned with problems
nvolving purely longitudinal modes, for which W = nw;.

The interval of averaging remains unspecifi»d, Two possible ties
ire fairly obvious: T =T,, the period of the fundamental oscillation; and
T = Tn’ the period of the nth mode, In the first case, each equation is
averaged over the same interval, while if T = 'rn, each equation is averaged
sver its own period, Partly because the argument leading to (4. 14) and
(4. 15) is not rigorous, there is no wholly satisfying reason for choosing
une or the other alternative. If the same interval, T = 'rl, is used for all
zquations, then it is necessary, for (4.8) to be satisfied, that the amplitude
and phase of the nth oscillation not change much in roughly n of its own

periods. This same condition must be met if T = T in each of the n equations,
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For in the equationn = 1, dn and 9, can be taken outside the integral only if
they are nearly constant over the interval Ty =nTo.

In all the problems considered here, the motions are in fact domi-
nated by the fundamental mode: the time scale of the slow changes is
asually longer than Ty and is essentially the same for all modes. Hence,
the choice T = 'l’l is appealing and will be used here. It happens also that

in some cases the equations are somewhat simpler. Comparison of numer-

ical results for the two possibilities has not been made.

V. AN EXAMPLE OF AMPLITUDE MODULATION

It appears that applications of the method of averaging, and the
procedure based on expansion in two time variables as well, have been
restricted to problems for which the function Fn’ Equation (4.1), is periodic.
This is true, for example, if the modal frequencies w_ are integral multiples
of the fundamental, W, =nw,. Because the specific examples discussed
later are, for simplicity, also based on the condition that W, =nw, it is
useful to examine a simple case in which the frequencies are not so related.
This may serve not to prove but to suggest the validity of Equations (4. 14)
and (4.15). The practical importance of this conclusion is considerable,
for one is then in a position to treat nonlinear problems involving tangential
and mixed tangential/axial modes which are commonly unstable in certain
kinds of combustion chambers.

Consider the simple problem of two oscillators linearly coupled and

described by the equations

» 2
fi, +wyn, = Kn, (5.2)
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Equations (4. 18) and (4. 19) reduce to

dA.

?t—l-=-i-—[(g +1.)A+(f +h)B] (5. 3)
dB.

. K [ - 4B, - (5. -
T T T L h)By G BygA] -4

Here, ifi = 1, then j = 2 and ccnversely, giving four equations, For the case

when the two oscillators have nearly the same frequency, w,+w, ~2w

1 1’
wl-wz ~ 0, so hij -1 and fi, g; zij - 0, Itis then a simple matter to show

that the Ai' Bi all satisfy the same equation,
2

£ ) -

(5.5)

The coefficients all oscillate at the '"beat frequency,'' approximately equal
to K/2 Wy
For example, if the initial condition is m = 0, n, # 0, then a solution

is

C

uh 1 sin( -%,1- t) sin w,t (5.6)

K
C2 cos(-z-c—u—t) cos w, t (5. 7)

n
2 ]

Vi. LONGITUDINAL MODES: w =nw,

This special case will serve as the basis for many of the examples
discussed later. The integrands in (4. 14) and (4. 15) are now periodic, with
period Ty the limits on the integrals can therefore be changed from (t, t+7)

to (0, v). In accord with the remarks at the end of §4, 7= Then (4. 14)

1"
and (4. 15) become
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da_ \ ZTr/w1

<+ < i j‘ F (t)cosw tdt (6.1)
dB_ 2"/“’1

¥ - 21m j' F (t)smw tdt (6.2)

The linear coupling terms (4. 20) - (4. 23) all vanish when w, = nw, , and the

only non-zero values of (4. 26) - (4.29) are

e . nij _
1+ 6n, itj Tl- 6n, i-j * 6n, j-i (6.3)
nij nij
T = . = -
4+ o, 4] Ty o, i-j o, itj (6.4)
The equations (4.16) and (4,17) are now
A E ., 2
_2-.lp 5 .1l o 22[ a5
dt 2 "an"n 2 W, n nij ij n, i+j
=1 =1 (6.5)
* D bnij(6n,i—j+6n,i+j)]
dB ) &
__n__1 1 mm, __1_ Z 2
F " ZPmBatza. A 7Tw [Cn.ij €35 On, 14j
n n, .
izl j=1
(6.6)
" Dpgy %5n1eg  Snson)]
With the mode shape ¥ _ = cosk_z, the integral I .. is
n n nij
I.. = ¥(6 + 6 +6 ) (6.7 )
nij =~ t '“'n,i4j n,i-j n, j-i *
and the formula (3, 60) gives eventually
- . 2 wl - w?
C nij . (o wit =W e
(6.8)

+ $ (2w -F-Dwgte)?] + -V -0 )6, ;46 0 )
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- —1 2- = 14 . 2 -— 2 2.4,
0 = - — {[2w’-(¥ 1)(wj w)"] + (3-'y)(auj -y )}on’ 145

nij 4y
v+l 2 2 2 (6.7)
Y+l -
+ e loog + (0w - w06, 5 0 +6,55)
Let
I .
an - = 2 Dm en = zwn Enn (6-10)

and after some arithmetic, Equations (6.5) and (6. 6) can be put in the forin:

1A B ®
& anAn + ean +-2_ Z liA'i(An-i-Ai-n-Anﬁ) - Bi(Bn-i+Bi-n+Bn-i)]
i=1
+EE— i{—!—A [(n2 -mZ)A ( 2—a.)z)A -(w2 -wz)A ]
2 wZ 3 L‘n-i 1 n-i_ m1-n i " i-n nH i n+i
i=l "n
(6.11)
1 2 2 2 2 2 2. 9
o2 B [lw - )B s+, D -w B, e p-w )3 ]
n
X
0. . _n . . 1
g = Bt ALt L [A(B 4B, -B )+B(A _-A +A )]
i=1
[+ o]
+E§2{-1—A[(w2 2B +Hw.l -wl)B, _-w?l -wl)B_.]
3 2 Ay B ey -0 0By Wy W By
i=l "n (6. 12)
1 2 2 22 2 }
i Bilw, ;-w A j-(w7 @A+ -w5)A ]
n
where _
p = XL (6.13)

8y
The first series in (6.11)and (6.12) arise from the symmetric parts

of C .. and Dni" One can verify directiy, in accord with the remark fol-
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lowing (3. 6C) that, because terms cancel one another by pairs, the second
series in (6.10)and (6. 11) vanish. Consequently, the equations to be solved

for problems involving purely longitudinal modes are

w
dA
3 o .
—clt_'n = anAn * 9an + Lf' z (Ai(ArrL-i‘Ai—n.Arx«i-i)”Esi‘Bn—i"‘Bi—n"LBn+i):l (6.14)
i=1

dB_ Bn o

— - - - A )
dat aan enAn = 2 [Ai(Bn—i+Bi-n Bn+i)+Bi(An-i A'i--n."An-l-i)] (6.15;

i=1
Some numerical examples are given in Section 10 and 11. For most cases
considered, five modes will be treated. The explicit equations, obtained

from (6. 14) and (6. 15}, are

dA
| S
~. = alA1+61B1-ﬁ(AlA2+AzA3+A3A4+A4A5)-ﬁ(Ble+BzB3+B3B4+B4B5)
(6. 16a)
dB, 8
- alBl-91A1+i[(BIAZ-AlBZ)+(BZA3-AZB3)+(B3A4-B4A3)
+(B,A.-B.A,)] (6. 16b)
44, A,+6. B +BAC . 28(A A +A A +A.A_)-BBZ.28(B.B.+B.B +B.B.)
dr. T BT bPA - 18378284 1A3A5)-BB) -28(B | B;+B,B +B. B,
(6.17a)
dB, .
- - QZBZ-BZA2+23_BIA1+(B1A3-B3A1)+(B2A4-B4A2)+(B3A5-B5Azﬂ
(6. 17b)
dA

¥ - 0.3A3+63B3+3L3AIA2-3ﬁ(A1A4+A2A5)-3[5(B1BZ+BIB4+BZB5) (6. 18a)

- ° a3B3-93A3+3{3\B1A2+B1A4+B2A1+BzA5)-3ﬁ(A1B4+AZBS) (6. 18b)



-36-

dA
4 _ 1 2 1 2
o i 0.4A4+64B4+4ﬁ(3A2 +A1A2-A1A5)-4{3(2BZ +B1B3+B1B5) (6.19a)
dB4
= - a4B4-64A4+4B(A1B3+AZBZ+A3B1+A5Bl)-4B(AlBS) (6. 19b)
dA5
5 ° a5A5+95B5+513(A1A4+A2A3)—5ﬁ(BlB4+B2B3 (6.20a)
dB5
¥ - aSBS-65A5+5(3(A1B5+BIA4+AZB3+B3AZ) (6.20b)

VII. AN APPROXIMATION TO THE INFLUENCE OF

TR#NSIENT SURFACE COMBUS TION

Only the simpl:st representation of the infl:ence of unsteady com-
bustion processes will be covered here. Elementary results for the linear
response to harmenic pressure variations form the basis. Certain of the
features of truly transient behavior will be ignored in the interest of obtaining
formulas which are clear and inexpensive to use.

The influence f surface combustion is contained in 8 , defined by
Zquation (3. 42). It fallows from (3. 40) that the corresponding contribution

to the force Fn in (4. 1) is
(cy  y KA
F ¢ - pJE_Z = PRy as . (7. 1)
o n

To simplify the discussion, consider only one of tle pieces of R; e.g., let
6, =1, 6y =0, so (3.42)is

AT’ ) (7.2)

Ro= pou, iy Fpoo (loo(my + my T,
a'O
It is best here also to avoid the complications associated with a condensed
phase: set n = 0, so the following results apply to propellants not containing

metal.
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There exists a class of analysis, discu_sed by Culick (1968), which
produces a formula for xfxb/l?xb ,» the fluctuation of mass flux due to a sinu-
soidal variation of pressure. This is a linear result, rﬁb/fﬁb being propor-

tional to the pressure fluctuation:

‘b p (r), . (i)y P
= = iR "] . .
— R'b P, [Rb Ry P, _(7 3)

My

The response function, R.b » is a complex function of frequency,

nAB

= R (7. 4)
' A+3 _(1+A) + AB

A

in which A is proport.onal to the activation energy for the surface reaction,
and B depends on botlk A and the heat released by the surface reaction. Out
of the same analyses, one can extract the formula for Af/"!‘o [see also Krier,

et al. (1968)] :

R T -

af _[_s C 4B l]2

?r— - T C E ‘Rb‘n) ind Y p . (7' 5)
o o p o

Consequently, if these results are used, (7.2) becomes, for sinusoidal motions,

T T -
5 = s C AB sCABx-l]E
R o= "o“b[(”'r—t ERy - E Y ) P
o p o p o
= relr) , . o) P
= pu R +if"] (7. 6)
ob P,
Note that R(r) and R(i) are dimensionless functions of the frequency and the

(r)

other parameters; if nonisentropic temperature fluctuations are ignored, Ri =
(r) i) o (1)
Rb (wi) and Ri = Rb (wi) .
Now the formula (7. 6) is, by construction, for steady sinusoidal vari-
ations only. The approximation suggested here is a means of using the formula
under conditions when the amplitude and phase of the oscillations are varying

in time. This is done by noting that for sinusoidal motions, i is equal to
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vl 9/8t . The replacement is made in (7. 6), and assumed to apply to all

modes. Thus, fi/po stands for ”i*i » and for an arbitrary pressure field ex-

pandad in the form (1. 6), R in (7.1) will hereafter be taken as

an .
- (r) . 1 () 9
R = "o“b)i::1 [“i tu at]"’i*i : (7.7)

The subscript ( )i on Ri(r) and Ri(l) means that each function is evaluated at

the frequency of the ith mode; these quantities can be calculated from (7. 6) and

(7. 4).

The force (7. 1) is now

() Y% 2 __(r). (i)
fn T LT izzlmi PimwR i 1 ¥ wes (7. 8)
n

The further approximation, ﬁi - izni , has been made in (7. 8); this is con-

sistent with approximations already made in deriving the equations (4. 1).

Finally, the rule (6. 8) gives directly the contributio~s fron. surface

combustion to an(c) and Gn(c) to be used in (6. 12) and (6. 13):
€@ Y% (r)
o= =2 By vds (7.9)
2E
n
(i)
R.
AL S (7. 10}
n ..t m

i
The same procedure ¢ an be applied to propellants containing metal; only

some details are chan.ed to account for » # 0.

A similar approximation can be used for handling combustion within
the volurae of a chamber as one finds in liquid rockets, thrust augmentors,
and rolid rockets exhibiting residual combustion. Although other contribu-
tions will in general arise, associated with mass and momentum exchange,

the direct contribution of energy release is represented by the terms con-
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taining Q and wp in eq. (2.2). The perturbations are part of P', (2.11),
which appears ultimately in H, Hl’ and Ll’ eqs. (3.30) - (3.32). Those
functions are on the right hand sides of the oscillator equations (3.39) and
(3.41). The dynamical behavior of combustion within the volume may, for
example, be represented by some sort of response function; the well-
known n-T model developed by Crocco and co-workers is a special form.
In any case, the contributions to the individual harmonics can be approxi-
mated as surface combustion was handled above. No results for bulk com-

bustion have been obtained.
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VIII. AN APPROXIMATION TO THE LINEAR AND NONLINEAR

AL.TENUATION CF WAVES BY GAS/PARTICLE INTERACTIONS

Part icularly ir solid propellant rockets using metallized propellants,
but in other systems as well, some of the combustion products appear in
the form of liquid or solid particles. The viscous interacting between the
particles and the gas may, under suitable conditions, provide a significant
dissipation of energy. It is often the case that the Reynolds number based
on the particle diameter is outside the range in which Stokes' law is valid;
it is necessary to use a more realistic representation of the drag force.
This introduces another nonlinear influence in the general problem.

Let F (p)
n

dencte that part of Fnin eq. (4.1), representing the influ-
ences of inert particles. The terms involved are those containing 61}} and
6Q£’ , the fluctuations of (2. 8) and (2.9). By tracing the development from
(2.10) ancd (2.11) to (2. 18) and (2.19), to (3.8) and (3. 9), to (3.40), with H

defined by (3. 30), one finds that the terms in question are
(p) — Y l __1_ _B'-_ _2 U -.I . = _.I . ]
F P - p—lE—[L [_a_z = & (6Qp+6up Fp)¢n+6Fp vy [dV . (8.1)
o n v

The differential heat transfer and force acting, per unit volume, between

the condensed phase and the gas are defined by (2. 8) and (2. 9); explicit formu-
las can be found only 5y solving the equations of motion (2. 5) and (2. 6) with
the force Ep and heat transfer QP specified. Numerical calculations

[Levine and Culick (1972, 1974)] have shown that for many practical cases,
nonlinear interactions are likely to be important. The approximate analysis

here will be based on the nonlinear laws used in those works:

] (8.2)
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12C
- .33 .55,
Q = p ——% (T -T)[1+ .23Pr’ " "Re 1 (8.3)
p P PrpsU P

where
Pl -
Re = 22 |u _u] . (8.4)
W p

Hereafter, the real flow will be treated only in a local approximation
so that the particle motions may be treated as one-dimensional; interactions
between particles are assumed to be negligible. For a single particle, with
spatial variations of the motion ignored, the equations to be solved for u'

and T' are
P

du’
_ 1 _ 13 . 1 o 2/3
t = - = Fp = - —Ez-(up-u )[1 + gRe :] (8.5)
p p.C
P S
dT' 12C
_ 1 _ p - P33 .55]
cq2--La - -__Z(TP-T)[H.z,pr Re (8.6)
Po Prp 0

To evaluate 8§F' and 5Q', the quantities §u' = u' -u' and §T' = T'_-T' are
p p % p P p
required; by subtracting du'/dt from (8.5), and dT'/dt from (8. 6), one

finds the equations

dbu' 1 du’ 6% 2/3
—_ T~ - !
ae o duy i - K = laupl (8.7)
d d
doT!’ ) dT ST .55
—F +;t—5Tp = - - K, J"’t lbupl (8. 8)
V-’ith p ”2
S
= S (
"d 184 '8.9)
3 C
‘Tt Sl o Per (8.10)
p
o.2/3

1 Pgo
K_Z;—L-u) (8.11)
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g .55

P
K. = .459Pr 33(_3:_) (8.12)

2

Comparison of (8. 7) and (8. 8) with (2. 8) and (2. 9) (again with spatial varia-

tions ignored) gives the formulas

dou' /3
d&T! 6T’ .55
- -1 .., 4T
Q) = -ppC += - ppC[‘rt 6Tp+ = +szpc —Pt lau | (8. 14)

As an approximation, the nonlinear terms in (8. 13) and (8. 14) will be evalu-

ated by using the line.r solutions for 6u!') and GT;. With Kl = Kz =0, the

linear solutions to (8. 7) and (8. 8), satisfying the initial condit.ons 6u;) = 6“;30

5T = 6T' att=t , are
P po o

-t/T,t t'/T -(t-t )/
(o]

t = l d d 1] 1 L] t ' H d
6up = -i_;e Er e u'(t')dt'-a (t)] -|.6upo-u (to)]e (8. 15)
o
-t/t,t t/T -(t-t )/
[ 1 d t Vgt ' 1 ' f o t
6Tp = ’_te tj e T'(t')dt'-T (t)]-[pro-'I (to)]e (8.16)
o

The second parts, arising from the initial conditions, represent short
term transients which are negligible for t-tO >> T4 If these are retained,
they will introduce in the oscillator equations (4. 1) terms which depend
explicitly on the history of the motions. In the interests of simplifying the
analysis, these term: will be ignored. This is an approximation which is
accurate only if the p~riods of the oscillations (all harmonics) are long
compared with T4 For the nth acoustic mode, the velocity and temperature

fluctuations are

(8.17)
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where us is given by (1. 12). Substitution into (8. 15) and (8. 16) gives
day

. . 1 n
buy = Xyny - T =7 Tz (8.18)
vk
n
x f -
. 2 n -1
6Tp = - (wn‘ftﬂn + a—') — T, v, (8.19)
n n y

The functions A and B are taken to be constant in this part of the calcu-
lation because the results will eventually be used in the right hand sides of
(4. 14) and (4. 15); because the short term transienrts have been ignored, the
lower limit on the int.grals is t, = 0. Explicit dependence on frequency is

contained in Xl and Xz-

_ - 2
X, = (wnﬂd)/(HQd) (8.20)
2
X, = (wnﬂt)/(HQt ) (8.21)
where
Q3 = "7 and 0t= woT, - {8.22)

Substitution of (8. 18) and (8. 19) into (8. 13; and (8. 14) gives for the

linear parts only,

pw X
- Gl
(6Q£)) = —P—— CT, - 1)[-— ul (;(E:‘,- -wn)—%ﬁn]*n (8.24)
lin Y t W

These locally one-din.ensional results can be used in (8. 1) with dwn/dz re-

placed by Vlbn to give

2 2
Q
(p) . t |
TF P = - X ”C—X ] Wy m[‘—z"*(Y 1’—C ol
p d

(8.25)
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Again by applying the rule (6. 8), one finds for the linear contributions from

gas/particle interactions:

‘P)_ ‘2“1+u’[x + - 1)—x] (8.26)
2 “p 2
0 o,
(P) _wn %" d
) S WL + § 1)_ (8.27)
n 2" I+ [1+ndz g, 1+nZJ

Recent numerical results reported by Levine and Culick (1974) have shown
that the result (8. 24) 1s quite ~ood for smaller particles, and if the frequency
is not too high. Beyond limits which are presently not well-defined, the
Reynolds number (8. 4) becomes too large for the linear drag and heat trans-
fer laws to be accurate. Further comments on the accuracy and some ex-
amples are given below.

The problem of analyzing nonlinear particle motions is avoided here.
A correct treatment -sould involve solving (8. 7) and (8. 8), the results then
being used in (8.13) end (8. 14). A very much sin.pler course is taken here;

the linear solutions are used everywhere for éub and 6T£). The nonlinear

part of the force F (p)
Yp R/C CK K
. (p) K|~ 27,1 1
re "] = —1 *T T+_T]} (8.28)
D oonlin JL Ta 2! g3 Ty 4
where the integrals ave:
~ -t 2/3 -
I - ) ‘6h£>| 6u£)' w_dv (8.29)
~ a ' -.l . 55
[ 3 e lou 177 )y av (8. 30)
~ o - 2
I, = [ 6wy av (8.31)
2/3
~ ) -, 2 -,
I, = I ((6up) Iaup! )wndv (8.32)
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To evaluate these integrals, it is easier to re-write the formulas (8. 18)

and (8. 19) for three-dimensional :.0tions as

X 1 1
- (™ 22 2 _2¢2 . d
Gui) = \?>(l+nd’ (A"+B ) sm(wnt+¢n)an (8. 33)
n
- X 1 1
. y-1 —2 22¢ 2 22 t
5T} = -(—---\7 )Tokwn)(lmt) (A“+B%) cos(u_t+o )y_ (8. 34)
where
(Bn-ﬂdAn) 3 (An+QdB)
sin¢_ = cOS @ =
n 21 2 2.1 ° n 2T .2 - 2. '
(1+Qd )2 (An+Bn 2 (1+Qd )a(An +B_ )z
(8.35)
¢ (Bn-OtA ) ¢ (An+QtBr)
sind¢ = , cosd = :
n L.z 2 2.1 n 2172 2.1
(1+Qt )Z(An +Bn )2 (I+Qt )-’-(An +Bn )z
The formulas (8.29) - (8. 32) become
1+gl . 1+§1 l+§l §1
~ 2772 2 22 . d.y.. d
I = Ik (1+Q,) <;,"T) (A +B) sm(mnt+¢n)!51n(wnt+¢n)l (8.36)
n
g 1+£
- ST TN 7-1 X2 27
T, = L") 1+0y]) (=L) (-_—To)(-—)(A +B )
- ykn v n ¢
d oy d, 2
I {-Cos(wnt+¢n)‘sln(u\nt+¢on )l (8.37)
1
2 2 2
(1+Q
~ d 1 2.d . 2 d
I 3 = 13[ :] (A +B )E { sin (wnt+¢>n )} (8. 38)
2+$ 2+¢
~ (“Q)z b 2_2ld(.2 d, . dgz
I = 4[ ‘ (An+Bn) T \sin (wnt+rn)lsm(mnt+¢n)‘ } (8.39)
where gl = 2/3, gz = 55 and the integrals involving the mode shapes are
1 2 £
i P )f oy 1lay (8. 40)
n
1 or, 20, (02
L, = T{I”n lve | “av (8.41)

n
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1 2
I, = Fjwn(vwn) v (8. 42)
n
1 2 §2
1, = T{?_‘Hn(”’n’ |V‘Vn| av (8.43)

n

For comparisca with numerical results, these integrals will be evalu-
ated for longitudinal modes in a uniform chamber. Then dV = Scdz and
Y, = cos k 2 with k nt/L and 0 £z £ L. By making use of the periodicity

of wn , and with 8 = knz , one c.n show that the values are

3+§, 2
1
205 m/2 2+t nsS_ 2+, [T(—=)] nS
- C . *1 _ Cc 1 2 c
Il = k I sin ede = —k—— 2 W - . 698(—1‘(—') (8. 44)
n 0 n 1 n
1+§
2
2nS mw/2 ¢ nS r T nS
L =——] cos’8sin 28d8 = (7) ( = .644(——9-) (8.45)
k k k
n O n 1"( 2
Loooe [ cos8sin8d8 = 0 (8. 46)
3 k .
n 0
s_ p 24,
14 = -g J(; cos Blsm 8! dé = 0 (8. 47)

To simplify writing, assume only here that T =T which is very closely true

in many practical cases, so ¢f_- ¢;= d)n, and define the functions

g
¢ (6) = sin(o t+o)|sintu t+o )] ! (8. 48)

3
xn(t) T.')l—?igt{.'Cos(‘”n”‘bn”Sin(‘”n”“’n)\ 2} (8. 49)

n

It

With all the preceding brought together, the nonlinear part of the

force (8. 1) is
1+¢,
rrlPl cu i {w e (aZBE) 7w ¢ )

1 . n l+x n n
nonlin 1+§2

L
wual) a2 T w x o) (8. 50)

[
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where §1 _ g
2> aX 1) X
W, =—( 698)1+Q) " K 1<:——/ <T'O‘> ) (8.51)
Yo nd
2 > Ef‘- c Exl §2 X,
W, = F(.644)(1+Qd )¢ §-1)— K2<_ - ) . (8.52)
Cp Y, 't

The time-averaging of (8. 49) according to (4. 14) and (4. 15), with

= 7, (see the remarks at the end of §{ 4) requires the integrals

Zﬂ/wl coswnt 2

1 ‘ } 1 n { cos$ \
I5 - wn"rl J‘O wngnﬁ' -sinwnt dt = 2T j(; Cn --sine,rde
| 2w/w1 4 coswnt \ | 2r { cosh
= = 5 e
16 T IO UnXy' -sinmntJ dt 27 % Xn _sina} d

where 6 = wnt. With Cn and X, given by (8. 48) and (8. 49), the integrals are

—t
1

2% 3
2—11r—£ {(_:szsnes ::in(6+¢n)| sin(9+¢n)l 1dB

—
it

6 = 7w T{ “oie ) 78 {°°5‘9+¢n"5m‘9+¢n”§2}de

Because the ‘tegrands have period 2w, the limits on the integrals have been
changed from (0, 2mn) to (0, 27); the integrals are then multiplied by n, giving
the factor n/run'rl = (}.ﬂ')'1 . Now let | = &4 ¢n: the limits become (¢, 27+d)
which, again because of periodicity, can be changed to (0,27). Moreover,

it is easy to show that the integrals over (m, 27) are equal to those over (0, 7),
so one has

rcos*L'cos<br+sin\l'sind> \ 1+t§1
\ ) J sin 'L' d'l’

[
(S 2]
Q| —

Oe— 9

3 .
©.sinvccsd +costUsing
n n
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cosyc.s8d +sinysin
Yc.s¢ +sinysing_

) T . 1+§
e = -7 j(;{ -sinwcos¢n+cos¢sin¢n}{(HgZ)Sln

|
Zw'gzsin 2 lll}d‘b

All integrals containing cosy vanish, and those containing siny can be re-

duced further to the interval (0, w/2), giv'ng the results

> sin¢ n/2 ’ 2+§1
g = { -cosr:bn} .y sin vay
0
2 sind)n m/2 . 2+g2 T,J/Z . gz
16 = F{-cosdbn}l:(lﬁ’z)‘ro sin vdy - EZ ) sin ﬂjdw:l

For gl = 2/3, the integial in I_ has the value 0. 698 as in (8. 44), and for

5

g?_ = 0. 55, the integrals in I, are

6

m/2  2+E, m/2 £,
sin “vdy = 0.713 [ sin®ya¢ = 1.175
0 0

Finally, then, the integrals are

sind
_1.396 n )\
I5 - T -cos¢.nJ’ \8.53)

.918 {Sin¢n

6 T -CO0Ss ¢>n

—
1l

(3.54)

After sind>n and CC